Search results for "olfactory receptor neurons"

showing 10 items of 17 documents

Identification of accessory olfactory system and medial amygdala in the zebrafish

2017

AbstractZebrafish larvae imprint on visual and olfactory cues of their kin on day 5 and 6 postfertilization, respectively. Only imprinted (but not non-imprinted) larvae show strongly activated crypt (and some microvillous) cells demonstrated by pERK levels after subsequent exposure to kin odor. Here, we investigate the olfactory bulb of zebrafish larvae for activated neurons located at the sole glomerulus mdG2 which receives crypt cell input. Imprinted larvae show a significantly increased activation of olfactory bulb cells compared to non-imprinted larvae after exposure to kin odor. Surprisingly, pERK activated Orthopedia-positive cell numbers in the intermediate ventral telencephalic nucl…

0301 basic medicineOlfactory systemanimal structuresGene ExpressionSensory systemImprinting PsychologicalAmygdalaArticleOlfactory Receptor Neurons03 medical and health sciences0302 clinical medicinemedicineAnimalsPhosphorylationZebrafishZebrafishFluorescent DyesGlomerulus (olfaction)Microscopy ConfocalMitogen-Activated Protein Kinase 3MultidisciplinarybiologyfungiOlfactory PathwaysCarbocyaninesZebrafish ProteinsAmygdalabiology.organism_classificationOlfactory BulbOlfactory bulbCell biologySmell030104 developmental biologymedicine.anatomical_structureOdorHypothalamusLarvaOdorants030217 neurology & neurosurgeryTranscription FactorsScientific Reports
researchProduct

Stimulus Driven Functional Transformations in the Early Olfactory System.

2021

Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in …

0301 basic medicineOlfactory systemmedia_common.quotation_subjectNeurosciences. Biological psychiatry. NeuropsychiatrySensory systemOlfactionReviewadaptationBiologyStimulus (physiology)03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePerceptionmedicinemedia_commonOlfactory receptormitral and tufted cellsOlfactory bulb030104 developmental biologymedicine.anatomical_structureOdorCellular Neuroscienceolfactory bulbolfactory receptor neuronsNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesRC321-571olfactionFrontiers in cellular neuroscience
researchProduct

Biogenic Amines Modulate Olfactory Receptor Neurons Firing Activity in Mamestra brassicae

2001

The modulatory effects of the biogenic amines octopamine and serotonin on pheromonal receptor neurons of Mamestra brassicae were investigated. The responses to sex pheromone components of two cells types (A and B) in single male long sensilla trichodea were monitored. Cell types A and B do not respond to the same compound. The response of type A to a pulse of the major sex pheromone component increased 5 min after octopamine injection. Responses of type B to other odorants increased after 30 min. In the absence of any pheromone stimulation the background firing activity of type A increased following octopamine injection. This background activity was used to evaluate the kinetics of octopami…

Agonistmedicine.medical_specialtyTime FactorsPhysiologymedicine.drug_classAgonist-antagonistMothsBiologySensory receptorClonidineOlfactory Receptor NeuronsBehavioral Neurosciencechemistry.chemical_compoundPhysiology (medical)Internal medicineBiogenic aminemedicineAnimalsAminesSex AttractantsNeurotransmitterOctopamineComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationOlfactory receptorDose-Response Relationship Drug[SCCO.NEUR]Cognitive science/Neuroscience[SCCO.NEUR] Cognitive science/NeuroscienceOctopamine (drug)Sensory Systemsmedicine.anatomical_structureEndocrinologychemistry[ SCCO.NEUR ] Cognitive science/NeuroscienceSerotoninChemical Senses
researchProduct

Modeling the insect mushroom bodies: application to a delayed match-to-sample task.

2013

Despite their small brains, insects show advanced capabilities in learning and task solving. Flies, honeybees and ants are becoming a reference point in neuroscience and a main source of inspiration for autonomous robot design issues and control algorithms. In particular, honeybees demonstrate to be able to autonomously abstract complex associations and apply them in tasks involving different sensory modalities within the insect brain. Mushroom Bodies (MBs) are worthy of primary attention for understanding memory and learning functions in insects. In fact, even if their main role regards olfactory conditioning, they are involved in many behavioral achievements and learning capabilities, as …

Arthropod AntennaeInsectaComputer scienceCognitive Neurosciencemedia_common.quotation_subjectModels NeurologicalAction PotentialsInsectGrasshoppersOlfactory Receptor NeuronsTask (project management)03 medical and health sciences0302 clinical medicineStimulus modalityArtificial IntelligenceMemorymedicineLearningAnimalsComputer SimulationDrosophilaMushroom BodiesProblem Solving030304 developmental biologymedia_commonMatch-to-sample taskSpiking neural networkMotor Neurons0303 health sciencesArtificial neural networkbiologybusiness.industryInsect brain; Insect mushroom bodies; Learning; Neural model; Neuroscience; Spiking neurons; Action Potentials; Animals; Arthropod Antennae; Bees; Computer Simulation; Drosophila; Grasshoppers; Insecta; Memory; Motor Neurons; Mushroom Bodies; Nerve Net; Olfactory Receptor Neurons; Problem Solving; Artificial Intelligence; Models Neurological; Neural Networks ComputerBeesAutonomous robotbiology.organism_classificationInsect mushroom bodiesmedicine.anatomical_structureInsect brain; Insect mushroom bodies; LearningMushroom bodiesDrosophilaArtificial intelligenceNeural Networks ComputerNerve NetbusinessInsect brain030217 neurology & neurosurgeryNeuroanatomyNeural networks : the official journal of the International Neural Network Society
researchProduct

Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system

2005

Olfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue. Due to limitations in heterologous expression, very few mammal ORs have been characterized, and so far only one is from human origin. Consequently, OR function still remains poorly understood, especially in humans, whose genome encodes a restricted chemosensory repertoire compared with most mammal species. In …

InsectaPhysiologyG protein[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringSf9BiologyOlfactory Receptor NeuronsCell LineReceptors G-Protein-Coupled03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineCalcium imagingPhysiology (medical)[SDV.IDA]Life Sciences [q-bio]/Food engineeringmedicineAnimalsHumans[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringReceptorComputingMilieux_MISCELLANEOUS030304 developmental biologyG protein-coupled receptorOrphan receptor0303 health sciencesMicroscopy ConfocalOlfactory receptorGenomics[SDV.IDA] Life Sciences [q-bio]/Food engineeringGTP-Binding Protein alpha SubunitsSensory SystemsCell biologyINSECTEmedicine.anatomical_structureOdorantsImmunologyCalcium[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Heterologous expressionBaculoviridae030217 neurology & neurosurgery
researchProduct

Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium.

2012

WOS: 000305340700029; International audience; BACKGROUND: P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices.…

MaleAnatomy and Physiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionGene Expressionlcsh:MedicineATP-binding cassette transporterPharmacologyMicechemistry.chemical_compoundMolecular Cell Biologypolycyclic compoundslcsh:ScienceMice Inbred BALB CMultidisciplinaryNeuromodulationProbenecidReverse Transcriptase Polymerase Chain ReactionNeurochemistryFluoresceinsSensory SystemsCell biologyElectrophysiologymedicine.anatomical_structureAlimentation et NutritionCyclosporineQuinolinesMedicineFemaleEffluxCellular TypesMultidrug Resistance-Associated Proteinsproduct p-glycoprotein;blood-brain-barrier;receptor neurons;cyclic-nucleotides;tumor-cells;expression;localization;protein;gene;tissuesMultidrug Resistance-Associated ProteinsResearch ArticleATP Binding Cassette Transporter Subfamily BNeurophysiologyBiologyOlfactory Receptor NeuronsOlfactory mucosaPsychologie (Sciences cognitives)Olfactory MucosaPeripheral Nervous SystemmedicineAnimalsFood and NutritionRats WistarBiologyOlfactory SystemOlfactory receptorlcsh:RNeurosciencesEpithelial CellsBiological TransportTransporterRatsCalceinMicroscopy FluorescenceVerapamilchemistryNeurons and Cognitionlcsh:QPropionates[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOlfactory epitheliumNeuroscience
researchProduct

An olfactory receptor for food-derived odours promotes male courtship in Drosophila.

2011

International audience; Many animals attract mating partners through the release of volatile sex pheromones, which can convey information on the species, gender and receptivity of the sender to induce innate courtship and mating behaviours by the receiver. Male Drosophila melanogaster fruitflies display stereotyped reproductive behaviours towards females, and these behaviours are controlled by the neural circuitry expressing male-specific isoforms of the transcription factor Fruitless (FRU(M)). However, the volatile pheromone ligands, receptors and olfactory sensory neurons (OSNs) that promote male courtship have not been identified in this important model organism. Here we describe a novel…

MaleOviposition[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : GenotypeMESH : OvipositionCourtshipMESH: GenotypeSexual Behavior Animal0302 clinical medicineMESH : Drosophila melanogasterMESH: AnimalsMESH : FemaleMatingSex AttractantsMESH: Sexual Behavior AnimalMESH: Ovipositionmedia_commonPhenylacetates0303 health scienceseducation.field_of_studyMultidisciplinaryMESH: Receptors Ionotropic GlutamateMESH : Receptors Ionotropic GlutamateAnatomyMESH: AcetaldehydeMESH : OdorsCell biologymedicine.anatomical_structureDrosophila melanogasterMESH: Sex AttractantsSex pheromonebehavior and behavior mechanismsPheromonefruitlessFemaleDrosophila melanogasterMESH : FoodMESH: FruitMESH: FoodGenotypemedia_common.quotation_subjectMESH : MalePopulationMESH: CourtshipMESH : AcetaldehydeAcetaldehydeMESH : FruitBiologyReceptors Ionotropic GlutamateOlfactory Receptor NeuronsMESH: Drosophila melanogaster03 medical and health sciencesmedicineAnimalseducationMESH : Sexual Behavior Animal030304 developmental biologyMESH : Sex AttractantsOlfactory receptorMESH: OdorsMESH: PhenylacetatesMESH : CourtshipfungiCourtshipMESH : PhenylacetatesMESH: Olfactory Receptor Neuronsbiology.organism_classificationMESH: MaleFoodFruitOdorantsMESH : Olfactory Receptor NeuronsMESH : AnimalsMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

Characterization of rat glutathione transferases in olfactory epithelium and mucus

2019

International audience; The olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and am…

MaleProteomicsPhysiologyScienceMaterials ScienceEnzyme MetabolismRespiratory SystemResearch and Analysis MethodsBiochemistryOlfactory Receptor NeuronsOlfactory Mucosa[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyMedicine and Health SciencesGlutathione ChromatographyAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceRats Wistar[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansEnzyme ChemistryMaterialsImmunohistochemistry TechniquesGlutathione TransferaseAffinity ChromatographyChromatographic TechniquesQRBiology and Life SciencesProteinsGlutathioneImmunohistochemistryBody FluidsEnzymesRatsHistochemistry and Cytochemistry TechniquesMucusNasal Mucosa[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory OrgansAmino Acid Specific ChromatographyPhysical SciencesOdorantsEnzymologyImmunologic TechniquesMedicineAnatomyPeptidesResearch Article
researchProduct

Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium.

2011

International audience; Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological p…

Male[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Multidrug Resistance-Associated Proteinsp glycoproteinATP-binding cassette transporterMESH : HepatocytesReceptors OdorantMESH : P-GlycoproteinMESH: HepatocytesMESH : Lymphatic Vessels0302 clinical medicineMESH : Protein Transportugt2a1MESH: SmellMESH: Receptors OdorantMESH: AnimalsReceptorxenobiotic metabolizingmucosa0303 health sciencesMESH : Gene Expression RegulationMESH : RatsGeneral NeuroscienceMESH : OdorsMESH: Gene Expression RegulationSmellProtein Transportmedicine.anatomical_structureBiochemistryLivertransporterbarrierEffluxMultidrug Resistance-Associated ProteinsMESH: Multidrug Resistance-Associated ProteinsMESH: XenobioticsMESH: Protein TransportMESH: P-GlycoproteinMESH: RatsMESH: Lymphatic VesselsMESH : Maleodorant clearancebrainMESH : XenobioticsxenobioticBiologysystemMESH : Rats WistarOlfactory Receptor NeuronsXenobiotics03 medical and health sciencesbulbOlfactory Mucosamultidrug resistanceMESH : Receptors OdorantmedicineAnimalsATP Binding Cassette Transporter Subfamily B Member 1Rats WistardetoxificationMESH: Olfactory Mucosa030304 developmental biologyLymphatic VesselsMESH : Olfactory MucosaMESH: OdorsMESH : LiverTransporterMESH: Rats WistarMESH: Olfactory Receptor NeuronsEpitheliumMESH: MaleOlfactory bulbRatsenzymeGene Expression RegulationOdorantsHepatocytesMESH : SmellMESH : Olfactory Receptor NeuronsMESH : Animalsolfactory epitheliumOlfactory epitheliumperireceptor event[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryDrug metabolismMESH: Liver
researchProduct

G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

2014

Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical res…

Mice 129 StrainPatch-Clamp TechniquesG protein[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionSensory systemMice Transgenicodorant receptorsBiologyReceptors OdorantMechanotransduction CellularOlfactory Receptor NeuronsMiceg protein-coupled receptorsAnimalsHumansCalcium SignalingMechanotransductionReceptorG protein-coupled receptormechanotransductionMice KnockoutMultidisciplinaryheterologous expressionBiological SciencesRecombinant ProteinsMice Inbred C57BLHEK293 CellsMice Inbred DBA[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Mutagenesis Site-DirectedEctopic expressionMechanosensitive channels[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]NeuroscienceTransduction (physiology)Mechanoreceptors[SDV.AEN]Life Sciences [q-bio]/Food and Nutritionmechanical sensorsSignal Transduction
researchProduct